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We introduce a new closed-form decomposition technique for estimating the model
parameters of an evenly sampled signal known to be composed of circular and hyperbolic
sine and cosine functions in the presence of Gaussian white noise. The techniqe is closely
related to Prony's method and hereditary algorithms that "t complex exponential functions
to evenly sampled data. The circular and hyperbolic sine and cosine functions are obtained
by adding constraints that limit the form of the characteristic polynomial coe$cients. It
avoids the leakage e!ects associated with the discrete fourier transform (DFT) for circular
sine and cosine functions. When the signal contains frequency components that are not
rational multiples of each other, the proposed decomposition yields amplitude and phase
parameters that are more accurate than those obtained with the DFT in moderate levels of
noise. First, we review Prony's method and one hereditary algorithm (the complex
exponential algorithm). Then, we detail three implementation procedures of the new
technique. The "rst is a two-stage least-squares approach. The second utilises a novel
concept of noise reduction which is attributed to Pisarenko. The last provides additional
means of noise reduction through a covariance formulation that avoids zero-lag terms.
Experimental and numerical examples of the application of the circular-hyperbolic
decomposition (CHD) are given.

( 2001 Academic Press
1. INTRODUCTION

In many applications, there is a need to "t a discrete time-limited signal to one or more
complex exponentials, such as the Markov parameters, the impulse-response function, and
the ring down of a linear structural dynamic system. The Prony family of algorithms has
been shown to be very useful in achieving such an objective [2]. A real signal composed of
complex exponentials can be expressed as

v(tl)"
m
+
i/1

A
i
exp(j

i
tl) (1)

and in the presence of Gaussian white noise as

y(tl)"v(tl)#e(tl) , (2)

where m, j
i
, A

i
, v (tl), y (tl), e(tl), and tl are the number of complex exponentials, poles

(frequencies and decay rates), residues (amplitudes and phases), signal, signal with noise,
noise, and evenly sampled control variable (often taken as time or distance along a path)
with the associated index l respectively.
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Since v (tl) is real, the complex pole j
i
must have a complex conjugate j

k
"j*

i
and its

corresponding complex conjugate residue A
k
"A*

i
. On the other hand, the poles of

hyperbolic functions are real and occur in reciprocal pairs (e.g., j
2
"1/j

1
). In practice, we

often make the restriction that m is an even number. Yet, there can be unpaired real poles in
which Case m could be odd. Here, we restrict m to be an even number 2n for notational
purposes. We note that, although not all data can be expressed in terms of either equation
(1) or (2), these equations encompass a very large class of signals [1}6]. Details of Prony's
method and the complex exponential algorithm for uncovering the parameters in equation
(1) are reviewed in sections 2.1 and 2.2.

Besides the need to "t data with complex exponentials, there is a need to "t data with
circular and hyperbolic sine and cosine functions, which are referred to as
circular}hyperbolic functions. Signals that can be described in terms of these functions
include stationary motions of rotating machines; deformation of cables, beams, and shells;
trajectories of celestial bodies. Prony's hereditary algorithms can be applied to these signals
because circular}hyperbolic functions represent a special case of complex exponentials.
However, unless the signal is noiseless, one must contend with non-zero decay rates for
circular sine and cosine functions and unpaired exponentials for hyperbolic sine and cosine
functions, which can cause a dilemma in the interpretation of parameter estimates. Thus, we
consider the special case of circular}hyperbolic functions, expressed as

v(tl)"
nu
+
i/1

p
i
cos(u

i
tl)#q

i
sin(u

i
tl)

#

ni
+
i/1

a
i
cosh(i

i
tl)#b

i
sinh(i

i
tl)#(!1)l~1

ng
+
i/1

c
i
cosh(g

i
tl)#d

i
sinh(g

i
tl)

#

nj
+
i/1

Me
i
cos[Im(j

i
)tl]cosh[Re(j

i
)tl]#f

i
sin[Im(j

i
)tl] cosh[Re(j

i
)tl]

#g
i
cos[Im(j

i
)tl]sinh[Re(j

i
)tl]#h

i
sin[Im(j

i
)tl] sinh[Re(j

i
)tl]N, (3)

y(tl)"v (tl)#e(tl), (4)

where nu , ni , ng , and nj are the number of frequencies u
i
, i

i
, g

i
, and j

i
, respectively, and
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are the amplitudes. The parameters u
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, c
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are real-valued for real signals. The j

i
are complex-valued. The transition

from equation (1) to (3) provides n ("nu#ni#ng#2nj) constraints that can be integrated
into the estimation procedure. On the right-hand side of equation (3), the terms 1 and 2
represent circular functions, the terms 3 and 4 represent hyperbolic functions, the terms
5 and 6 represent hyperbolic functions multiplied by a circular component at the Nyquist
frequency, and the terms 7}10 represent the product of hyperbolic functions (3) are given in
sections 3.1}3.3. Experimental and numerical examples of the proposed decomposition are
given in sections 4.1 and 4.2, respectively. Conclusions are presented in section 5.

2. BACKGROUND

In sections 2.1 and 2.2, we review Prony's method and the complex exponential
algorithm. Prony's method is a traditional technique that transforms 4n data points, known
to be composed of exactly 2n complex exponentials, into the pole and residue parameters of
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equation (1). The complex exponential algorithm is a generalization of Prony's method to
data, which is overdetermined data and noisy.

2.1. PRONY'S METHOD

Prony's method transactions N"4n evenly sampled discrete data points, at this juncture
taken to contain no noise, into the pole and residue parameters of 2n distinct exponentials
as described in equation (1) [2, 4]. When a signal contains more than 2n complex
exponentials, the data are said to be underdetermined, and Prony's method will often
provide an exact map between the data and results. However, the results from an
underdetermined data set may not match the data exactly in some instances. For example,
v(1 : 4)"[1,!0)9, 0)8,!0)7]T does not conform with equation (1) for any choice of j

i
and A

i
when m)2. Unfortunately, there is no reliable physical interpretation or

good resolution for such results. On the other hand, most signal evaluations involve
quantities of data that far exceed the number of parameters desired. For these evaluations,
the data are referred to as overdetermined, which will be readdressed through the complex
exponential algorithm in section 2.2. For now, we assume that 4n data points are composed
of exactly 2n distinct complex exponentials. In the absence of noise, the following
expressions hold:
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where tl"[l!1]Dt is time in s. The parameters z
i
and j

i
represent the ith pole in the

z domain and frequency domain respectively. These parameters are related by

j
i
"

1

Dt
ln(z

i
), (6)

where j
i
has units of rad/s. The problem reduces to "nding z

i
and A

i
such that equation (5)

holds for all l3M1, 2,
2

, 4nN.
The z-domain characteristic polynomial is given by

2n
<
i/1

[z!z
i
]"
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+
k/0

a
k
[z]k , (7)

where a
2n
"1 and its roots z

i
are the poles, which need to be uncovered. We note that the

characteristic polynomial has the special property
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a
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for all z3Mz
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Next, we introduce the Hankel matrix < (i, k),v(i#k!1), which can be expressed in
verbose form as

<(1 : 2n, 1 : 2n#1)"

v (1) v(2) 2 v(2n#1)

v (2) v(3) 2 v(2n#2)

F F } F

v (2n) v (2n#1) 2 v(4n)

. (9)

As a consequence of equation (5), every row in the Hankel matrix can be written as
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However, it follows from equation (8) that
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Therefore, <(l, 1 : 2n#1)[a
0
, a

1
,2, a

2n
]T"0 and <(1 : 2n, 1 : 2n#1) [a

0
, a

1
,2, a

2n
]T

results in the null vector [0, 0,2, 0]T. Hence, the entries in each row of the Hankel matrix
are related to the coe$cients of the characteristic polynomial. Since a

2n
"1, the

characteristic polynomial coe$cients can be determined directly from the Hankel matrix.
Partitioning the right-band column and inverting the remainder, we obtain

[a
0
, a

1
,2, a

2n~1
]T"2!<(1 : 2n, 1 : 2n)~1<(1 : 2n, 2n#1), (12)

where [ ]~1 denotes the matrix inverse operator. The poles z
i
can then be calculated by

solving equation (8).
We emphasize that the above procedure is valid when the signal contains exactly 2n

complex exponentials. If the signal contains less than 2n complex exponentials, the
calculation of the inverse of the matrix will be ill-conditioned. If the signal contains more
than 2n complex exponentials, the calculation will not respect the true spectral information
and may not match the data exactly.

Having calculated the characteristic delays z
i
, we determine the residues, A

i
from
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v (2n)H . (13)

We note that this computation requires only the "rst 2n data points. When dealing with
overdetermined data sets in the following section, all of the data are utilized in establishing
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the residues. Here, the "rst 2n data points produce results that are equivalent to those
obtained with any other combination of 2n data points in v (l ). In the next section, we
provide two generalizations of Prony's method: namely, the treatment of overdetermined
data and noise.

2.2. COMPLEX EXPONENTIAL ALGORITHM

In this section, we review the complex exponential algorithm [2]; which is known as the
least-squares Prony1s method, the autoregressive technique, or the maximum entropy method.
The complex exponential algorithm is an estimation procedure as opposed to a
transformation. Prony's method is a transformation because 4n data points are represented
by 4n parameters. The complex exponential algorithm represents N*4n data points with
4n parameters, as in equation (1) or (2), in the presence of noise. We assume that N evenly
sampled data points are known to contain exactly 2n distinct complex exponentials in the
presence of Gaussian white noise, as in equation (2). We intend to uncover the parameters of
equation (1) and quantify the noise contribution.

The basic concept of the complex exponential algorithm is to utilize data redundancy not
considered by Prony's method to provide an averaged or, at least, a more consistent result.
A closed-form solution is established by breaking the problem into two linearized stages.
The "rst stage uncovers the characteristic delays and the second one uncovers the
associated residues. Again, we examine the structure of the Hankel matrix,

> (1 : N!2n, 1 : 2n#1)"

y (1) y(2) 2 y (2n#1)

y (2) y(3) 2 y(2n#2)

F F } F

y (N!2n) y (N!2n#1) 2 y (N)

, (14)

where y (l)"v(l )#e (l). In this case, the column length of > is N!2n and is chosen so
that the index l does not exceed N. Each row of the Hankel matrix >(l, 1 : 2n#1) can still
be related by the coe$cients of the characteristic polynomial, in equation (7), with an
associated error e (l) given by

e(l )">(l, 1 : 2n#1) G
a
0

a
1
F

a
2n
H . (15)

This error must be equal to +2n
k/0

a
k
e(l#k) according to the de"nition of y (l) in equation

(2). The "rst stage of the least-squares solution is obtained by summing the squares of the
errors and minimizing the primary objective function

SSE
1
(a

0
,2, a

2n~1
; a

2n
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N~2n`1
+
l/1

e (l)2. (16)

The solution is expressed as

[a
0
, a

1
,2, a

2n~1
]T"!> (1 : N!2n, 1 : 2n)`>(1 : N!2n, 2n#1), (17)
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where a
2n
"1 and the matrix pseudo-inverse operator [ ]`,[[ ]T[ ]]~1[ ]T for real

quantities and [ ]`,[[ ]H [ ]]~1 [ ]H for complex ones. The poles z
i
are determined from

equation (8).
In the second stage, the residues A

i
are determined by de"ning a secondary objective

function as

SSE
2
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The minimum of this function is realized when
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We note also that this computation involves all N data points in contrast to equation (13).
Prony's method and the complex exponential algorithm provide the same result if either the
data matches equation (1) or N"4n.

3. CIRCULAR-HYPERBOLIC DECOMPOSITION

In this section, we detail three implementations of the new circular}hyperbolic
decomposition technique (CHD). In the "rst implementation, we utilize a two-stage
least-squares approach that parallels the complex exponential algorithm. In the second one,
we modify the technique incorporating a novel concept of noise reduction attributed to
Pisarenko [1]. In the third implementation, we provide additional means of noise reduction
through a covariance formulation that avoids zero-lag terms. These implementations are
discussed in sections 3.1}3.3 respectively.

The basic concept of the CHD involves constraining the form of the characteristic
polynomial coe$cients a

k
de"ned in equation (7). However, constraining these coe$cients is

not a new concept [1, 5]. In the Pisarenko harmonic decomposition (PHD) [1], we "nd the
a
k
as the eigenvector associated with the smallest eigenvalue k

0
of

B (0) B (1) 2 B (2n)

B (1) B (0) 2 B (2n!1)
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a
1
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a
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0 G
a
0

a
1
F

a
2n
H .

Here, B (k) is a known covariance function of a real stationary signal of order 2n. For
instance, we often take the covariance function to be the autocorrelation function. Observe
that the "rst row reads exactly the same as the last row in reverse, the second row reads
exactly the same as the second to least row in reverse, and so forth. Thus, the PHD
implicitly enforces the symmetry requirement

a
n`i

"a
n~i

for i3M1, 2,2, nN. (20)
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It can be shown that a stationary signal whose autocorrelation function satis"es equation
(20) must be composed of circular sine and cosine functions. Pisarenko [1] and Marple [5]
provide additional insights into this point.

We should stress that, as a cautionary note, we do not detail the implementation of the
PHD. We utilize some concept from the PHD in Section 3.2, but the implementation of
Section 3.2 should not be confused with he PHD. A detailed description of the PHD is given
in reference [1].

The a
k
can certainly be estimated from a covariance function, as is the case with the PHD.

The process of estimating a covariance function has its own associated di$culties and
errors, particularly for signals with a short duration. The phase information of a signal
cannot generally be recovered from a covariance function. It is also obvious that covariance
functions are also ill-de"ned for hyperbolic functions in the stationary sense. Hence, it may
not be desirable to estimate a covariance function and subsequently estimate the signal
parameters directly from the signal itself.

As detailed in section 2.1, the a
k
also relate the columns of the Hankel matrix of a sampled

signal. But, the Hankel matrix does not enjoy the symmetries observed above in the
covariance matrix B. This section details di!erent methods of enforcing the symmetries in
the a

k
. We note that the method that we use to enforce this symmetry is similar to the one

used in the Prony spectral line (PSL) estimation technique [5]. However, we do not provide
details of the PSL.

Another important issue to address, here, is that an estimation algorithm can neither
recognize that a signal is stationary nor generally enforce the requirements of stationarity.
Upon close examination, equation (20) can also be satis"ed by a large class of
non-stationary functions; namely, hyperbolic sine and cosine functions and the products of
hyperbolic sine and cosine functions and circular sine and cosine functions. Enforcing the
symmetry conditions in equation (20) is broader than just a means to uncover circular sine
and cosine functions. It provides the means for decomposing a time-limited signal in terms
of circular and hyperbolic sine and cosine functions.

3.1. THE LEAST-SQUARES PROCEDURE

In this section, we describe how to constrain the complex exponential algorithm to
decompose a signal in terms of circular-hyperbolic functions in the presence of noise, as
expressed in equation (4). We begin by examining the structure of the characteristic
polynomial for circular and hyperbolic functions; that is, p cos(utl)#q sin(utl),
a cosh(itl)#b sinh(itl), or (!1)l~1[c cosh(gtl)#d sinh(gtl)]). We observe that each of
these functions has two poles Mz

1
, z

2
N with the property

z
1
z
2
"1. (21)

Hence, the characteristic polynomial, for either a circular or a hyperbolic function, always
takes the form

z2#(z
1
#z

2
)z#1"z2#r

1
z#1, (22)

where r
1

is real. Similarly, we examine the structure of the characteristic polynomial for the
terms involving the product of circular and hyperbolic functions in equation (3). We observe
that each of these terms has four poles Mz

1
, z

2
, z

3
, z

4
N"Mz, 1/z, z*, 1/z*N with the property

z
1
z
2
"z

3
z
4
"1. (23)
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Therefore, the characteristic polynomial for the inner product of a circular and a hyperbolic
function, always takes the form

[z2#(z
1
#z

2
)z#1][z2#(z

3
#z

4
)z#1]"

2
<
i/1

(z2#r
i
z#1), (24)

where the r
i
are real. Subsequently, the characteristic polynomial for n circular}hyperbolic

functions, where the product of a circular and hyperbolic function counts as 2, can be
expressed as

n
<
i/1

[z2#r
i
z#1]"z2n#

n
+
i/1

r
i
z2n~1#

n
+
i/1

n
+
k/1

r
i
r
k
z2n~2#2#

n
+
i/1

r
i
z#1

"z2n#a
2n~1

z2n~1#a
2n~2

z2n~2#2#a
1
z#1. (25)

Examining the structure of equation (25), we note that the polynomial coe$cients exhibit
the symmetries

a
n~i

"a
n`i

for i3M1, 2,2, nN (26)

which provides n constraints. This symmetry requirement is exactly the same as in equation
(20).

Next, we choose the matrix

>I (1 :N!2n, 1 : n#1)"

y (n#1) y (n)#y (n#2) 2 y (1)#y(2n#1)

y(n#2) y(n#1)#y (n#3) 2 y (2)#y(2n#2)

F F } F

y (N!n) y(N!n!1) 2 y (N!2n)#y(N)

.

(27)

Due to the symmetries in equation (26), the objective function, expressed in equation (16),
has a constrained minimum when

[a
n
, a

n`1
,
2

, a
2n~1

]T"!>I (1 : N!2n, 1 : n)`>I (1 : N!2n, n#1), (28)

where a
2n
"1. Here, we note that the minimum number of data points required is reduced;

equation (28) can be executed when N*3n, whereas equation (17) requires that N*4n.
The polynomial coe$cients Ma

0
, a

1
,2, a

n~1
N are given by equation (26), and the poles are

calculated by solving equation (8) as before. Then, the residues can be calculated according
to equation (19). If the results can be presented in exponential form, the decomposition is
complete.

If we were using either the PHD or the PSL, we would not know how to contend with
z domain pole estimates away from the unit circle because they are not expected. This can
be a practical concern when implementing either the PHD or the PSL. One approach to
resolve this dilemma, for spectral line estimation, is to ignore the modulus of the pole
estimates and to recalculate them via exp( j Arg(z)), where Arg(z) denotes the argument of
z (the polar angle on the z domain). Although, this approach may be appropriate for
practical purposes, it is not correct in a rigorous sense. It ignores the basic fact that the
solution set that satis"es the symmetry requirement in equation (20) is broader than just the
circular sine and cosine functions.
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We also observe that equation (3) actually extends to the entire z domain. One might now
wonder if there is really any di!erence between equations (1) and (3). The di!erence is one of
emphasis. This symmetry requirement encourages the pole estimates to occur on either the
unit circle or the real line, where it takes only one degree of freedom n"nu , ni , or ng per
frequency. Elsewhere, it takes two degrees of freedom n"2nj per frequency. This also
suggests a potential for di$culties in large-order problems or problems where the model
order is highly overspeci"ed with the so-called computational degrees of freedom. The full
bene"ts over the complex exponential algorithm may not be realized in such instances.

When the results are desired in the form of equation (3), some additional algebra is
required. First, we collect the poles on the unit circle and pair complex conjugate poles and
residues. The circular frequencies u

i
and amplitudes p

i
and q

i
associated with the pole pair

Mz, z*N and corresponding residues MA, A*N are

u"DArg(z) D/Dt, p"2 Real(A), q"!2 Imag(A). (29}31)

Next, we collect the positive poles and pair reciprocal poles and corresponding residues.
The "rst hyperbolic frequencies i

i
and amplitudes a

i
and b

i
associated with the pole pair

Mz, 1/zN (DzD'1) and corresponding residues MA
z
, A

1@z
N are

i"ln(z)/Dt, a"(A
z
#A

1@z
), b"(A

z
!A

1@z
). (32}34)

Then, we collect the negative poles and pair reciprocal poles and corresponding residues.
The second hyperbolic frequencies g

i
and amplitudes c

i
and d

i
associated with the pole pair

Mz, 1/zN (DzD'1) and corresponding residues MA
z
, A

1@z
N are

g"ln(DzD)/Dt, c"(A
z
#A

1@z
), d"(A

z
!A

1@z
). (35}37)

Finally, the remaining poles must correspond to the j in equation (3). The frequencies j
i
and

amplitude e
i
, f

i
, g

i
, and h

i
associated with the poles Mz, 1/z, z*, 1/z*N (DzD'1 and Im(z)'0)

and corresponding residues MA
z
, A

1@z
, A

z*
, A

1@z*
N are

j"ln(z)/Dt, e"2 Re(A
z
#A

1@z
), f"!2 Im(A

z
!A

1@z
), (38}40)

g"2 Re(A
z
!A

1@z
), h"!2 Im(A

z
#A

1@z
). (41, 42)

Equations (29)}(42) provides the estimates of the parameters for the deterministic part of
the signal in the form of equation (3). The noise part can be obtained by generating equation
(3) from the parameters estimates and substracting the result from the original data.
Equations (19), (26), and (28) represent the basic formulation of CHD.

3.2. NOISE REDUCTION VIA THE PISARENKO PROCEDURE

In this section, we utilize a noise reduction from Pisarenko to establish an unbiased
estimate of the characteristic polynomial from the covariance matrix. Pisarenko [1] showed
that this is possible if the e!ect of noise on the covariance matrix is known. However, the
method presented here is not the PHD and should not be confused as such.

The expected value of the covariance of y can be expressed as

E[y(i)y (k)]"G
v(i)v(i)#k

0
, for i"k,

v(i)v(k), for iOk,
(43)
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where E[ ] denotes the expected value. The expected value of the random part is zero
whenever iOk. When i"k, the expected value of the random part approaches the noise
variance

k
0
" lim

N?=

1

N

N
+
i/1

e(i)2 (44)

which is a zero-lag term. De"ning yJ
i

as the ith column of >I , we form a special
time-dependent or transient covariance matrix as

C(1 : n#1, 1 : n#1)"
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(45)

which is an unconventional expression due to our de"nition of >I and subsequently yJ
i
. The

expected value of C can be expressed as

E[C(1 : n#1, 1 : n#1)]"

vJ T
1
vJ
1
#k vJ T

1
vJ
2

2 vJ T
1
vJ
n`1

vJ T
2
vJ
1

vJ T
2
vJ
2
#2k 2 vJ T

2
vJ
n`1

F F } F

vJ T
n`1

vJ
1

vJ T
n`1

vJ
2

2 vJ T
n`1

vJ
n`1

#2k

(46)

where vJ
i
is the noise-free part of yJ

i
and k is k

0
times the column length of >I . The eigenvalue

decomposition

1 0 2 0

0 1
2

2 0

F F } F

0 0 2 1
2

C(1 : n#1, 1 : n#1)"("(~1 (47)

provides the eigenvalues as the components of the diagonal matrix " and the eigenvectors
as the column of W. It follows from the structure of equation (46) that the eigenvector W ( :, 1)
associated with the minimum eigenvalue K(1) is an unbiased estimate of the characteristic
polynomial coe$cients Ma

n
, a

n`1
,2, a

2n
NT for which k is a minimum. Additionally, the

eigenvalue decomposition may provide improved numerical stability in comparison to
equation (28). Furthermore, the value of "(1) divided by the column length of>I provides an
estimate of the noise variance k

0
. We note that a

2n
need not be set equal to unity. As before,

the coe$cients Ma
0
, a

1
,2, a

n~1
N are determined according to equation (26). Then, the poles

and residues are calculated using equations (8) and (13) respectively.

3.3. NOISE REDUCTION VIA THE COVARIANCE PROCEDURE

In the preceding section, we observed that only the zero-lag terms of the expected value of
the covariance matrix C are a!ected by Gaussian white noise. Assuming that all of our other
model assumptions are satis"ed, the least-squares formulation of the complex exponential
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algorithm biases results because the errors e(l) in equation (15) are not statistically
independent. The statistical independence is an important and an often violated assumption
involved with the least-squares regression [7]. We begin with the observation that equation
(28) can also be expressed in terms of the covariance matrix as

G
a
n

a
n`1
F

a
2n~1

H"!C(1 : n, 1 : n)~1C(1 : n, n#1). (48)

We observe from equation (46) that while E[C(i, i )] contains a noise contribution,
E[C(i, k)] does not whenever iOk.

By letting

CI (1 : n, 1 : n#1)">I (1 : N!2n, 1 : n)T>I (2n#1 : N, 1 : n#1), (49)

we can obtain an unbiased estimate of the characteristic polynomial coe$cients via

G
a
n

a
n`1
F

a
2n~1

H"!C(1 : n, 1 : n)~1CI (1 : n, n#1). (50)

because the a
k

also relate the noise-free portions of the covariance matrix, as shown for
the Hankel matrix in section 2.1. The key feature of this approach involves avoiding the
zero-lag terms of the covariance matrix. The remaining coe$cients Ma

0
, a

1
,2, a

n~1
N are

obtained according to equation (26). The poles and residues are determined according to
equations (8) and (13), respectively.

We note that, in general, the data do not conform, with our other model assumption, and
the assumption of statistical independence may or may not be signi"cant in comparison
with other potential violations of the model assumptions.

4. APPLICATIONS

In this section, we provide experimental and numerical examples of the application of the
CHD. In section 4.1, we consider an experiment involving the motions of a shaker system
with harmonic distortion. The data obtained from this experiment appear to be at least
weakly stationary. For stationary data, only the sine and cosine terms are signi"cant. In
section 4.2, we uncover the model parameters from numerically generated data of a cable
deformed under the e!ect of gravity.

4.1. EXPERIMENTAL EXAMPLE: HARMONIC DISTORTION OF A SHAKER SYSTEM

In this system, we implement the CHD described in sections 3.1}3.3 to uncover the
harmonic distortion of a shaker system. A signal generator provides a sinusoidal command
voltage to the shaker ampli"er. An accelerometer is studded to a reaction mass attached to
the shaker's armature. An acquistion system samples the analog signal from the
accelerometer and associated hardware into a record of 160 s at the rate of 64 samples/s.



Figure 1. Experimental example of acceleration time series y(tl).
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The record is carved into 37 ensembles with 75% overlap. The duration of each ensemble or
sampled window is 16 s, as shown in Figure 1. The frequency of the sinusoidal command
voltage is approximately equal to 10 Hz. However, the excitation frequency is not known
a priori and periodicity within the sampled window is not ensured.

The "rst issue is to establish a model order m for the signal. Perhaps, the most common
method is to examine the singular values of the singular value decomposition of the
covariance matrix >T>"QDQT or Hankel matrix >"PD1@2QT normalized with the
column length of >. When D(m#1) is small, the model order is m. We demonstrated in
equation (35) that Gaussian white noise results in positive contributions to the zero-lag
covariance terms C(i, i). In low-noise situations, the singular values drop sharply to
approximately k once the appropriate model order has been exceeded, and they maintain
the same order of magnitude for subsequent values. Since the smallest singular value does
not approach zero ever for large m, the singular values of >T> are termed biased singular
values. Sinusoids with mean-squared values of the same order as k are indistinguishable
from noise. Conversely, the smaller singular values of > ( :, 1 : m)T>( :, m#1 : 2m) do tend
towards zero, since zero-lag terms are avoided; they are termed unbiased singular values. In
moderate noise situations, the unbiased singular values may provide a valuable tool for
choosing m when NA1.

In Figure 2, we show the biased and unbiased singular values for the signal given in
Figure 1. In this situation, the di!erence between the biased and unbiased singular values is
small, yet noticeable, for the smaller values of m. The biased singular values drop-o! sharply
from 5 to !28 dB as m exceeds 2 and from !52 to !65 dB as m exceeds 7. Since D(1) and
D(2) are much greater then D(3), one is tempted to use m"2. But the singular values above
m"2 continue to decrease with increasing m, implying that the next few terms are small
deterministic signal components. However, the biased singular values D(m) for m'8 are
roughly the order of magnitude of D(8), implying that they may be attributed to noise. We



Figure 2. Experimental example of singular values: **, biased singular values; - - -, unbiased singular values.
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also notice that the value of the unbiased versus biased singular values diverge at m"8,
also implying a model order of m"8. We choose the model orders of m"2 and 8 for the
signal. The "rst choice demonstrates the performance of CHD in the presence of biased
noise due to an under-valued model order. The second choice demonstrates the
performance of the CHD with a well-selected model order. The di!erences between the
original signal y(tl) and its estimates v(tl) using the procedure implemented in section 3.1
with model orders m"2 and 8 are shown in Figures 3(a) and 3(b) respectively.
A comparison of the two "gures shows that the error is reduced signi"cantly by increasing
the model order from m"2 to 8. We should also note that the error is large near the start
and the end of the record. This can be attributed to the error in the frequency estimates. This
is akin to the problem of leakage or wrap around error associated with the DFT [8, 9].

Estimates of the frequency, amplitude, and associated errors with model order m"2 for
the three implementations are shown in Table 1. The results obtained by implementing the
scheme in section 3.2 are quantitatively and qualitatively better than those obtained with
the schemes in sections 3.1 and 3.3. However, this is not always the case. The model order is
smaller than the order of the signal. Hence, the noise is deterministic and biased. The form
of noise violates the basic assumptions used in the development of the algorithms.
Surprisingly, the correlation c2 between measured and estimated values is near unity for the
"rst two cases and reasonable for the third one, which implies that the performance of the
estimation algorithms is fair.

Next, we assume that m"8 and implement the CHD for each of the 37 ensembles. The
three implementations provide about 30}45 dB better results than the results obtained with
m"2. This time the decomposition can explain approximately the "rst 55 dB of the signal
and the results are more consistent among the various estimation schemes. The signal is
composed of the primary frequency, its "rst and second harmonics, and an extremely small
near-zero frequency component. A summary of the mean results is provided in Table 2. The
components of the "rst and second harmonic are !34 and !57 dB below the primary



Figure 3. Experimental example of error e (tl) using the technique of section 3.1: (a) m"2 and (b) m"8.

TABLE 1

Experimental example2mean parameter estimates of 37 ensembles n"1

Method u
1

(Hz) Dp
1
#jq

1
D (g) c2 (dB) (S/N)

Section 3.1 9)80155(0)00038) 0)8887(0)0013) 0)9811 17)2
Section 3.2 9)79857(0)00037) 0)8959(0)0005) 0)9971 25)3
Section 3.3 9)80699(0)00063) 0)8587(0)0048) 0)9161 10.4
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tone, respectively. In other words, the total harmonic distortion is about 2.0%. In Figure 4,
we show the power spectral density (PSD) of the singular using a boxcar window, the PSD
using CHD (section 3.1 and m"8), and the PSD of the noise. We note that the
implementation procedure of section 3.3 consistently represents the zero or near-zero
frequency component with a small hyperbolic term, rather than a circular one. This
emphasizes our assertion in section 3 that the algorithm itself does not enforce an
assumption of stationarity.

For comparison, the peak parameters of the DFT are provided in Table 3, which
demonstrate the sensitivity of the amplitudes of phase estimates to the frequency. Here, the
e!ects of leakage associated with the DFT are much more signi"cant than the errors
observed for either of the cases documented in Figure 3. Each of the three implementations
of the CHD describes the signal well.

4.2. NUMERICAL EXAMPLE: CABLE DEFORMATION DUE TO GRAVITY

In this section, we show how a signal composed of a hyperbolic function, with a small
Gaussian white noise component, can be analyzed with the techniques discussed in sections



TABLE 2

Experimental example2mean parameter estimates of 37 ensembles n"4

Method u
1

or i
i
s (Hz) Dp

i
#jq

i
D or Da

i
#jb

i
Ds (g) c2 (dB) (S/N)

Section 3.1 0)699393(0)367055) 0)000101(0)000064) 0)99999 55)2
9)796872(0)000002) 0)896984(0)000145)

19)593836(0)000091) 0)018090(0)000113)
29)376525(0)001472) 0)001241(0)000038)

Section 3.2 0)529780(0)284751) 0)000100(0)000056) 0)99999 55)8
9)796872(0)000002) 0)896984(0)000144)

19)593825(0)000092) 0)018090(0)000113)
29)392829(0)000997) 0)001359(0)000025)

Section 3.3 0)257881(0)142207)s s,t 0)99999 55)5
9)796872(0)000015) 0)896985(0)000144)

19)593734(0)000096) 0)018090(0)000113)
29)399722(0)002036) 0)001317(0)000028)

Note: Parenthesis denotes the standard deviation of the preceding parameter estimate.
sDenotes hyperbolic term.
tNear-zero and ill-de"ned.

Figure 4. Experimental example of power spectrum: **, DFT PSD; *, CHD PSD; - - -, error DFT PSD.
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3.1}3.3. The frequency and amplitudes are given in Table 4. The signal, to be examined here,
is generated numerically and corresponds to a cable supported at its ends by two pins and
loaded by its own weight. The shape of this cable is hyperbolic. To conduct the proposed
analysis, we normalize the signal to a unit length ¸ and sample it given a sampling interval
of 0)025¸.



TABLE 3

Experimental example2peak amplitudes of the DF¹ and parameter estimates for a single
ensemble n"4

Method u
i
or i

i
s (Hz) p

i
or a

i
s (g) q

i
or b

i
s (g) c2 (dB) (S/N)

Section 3.1 0)424557 0)000011 0)000137 0)99999 53)6
9)796870 0)604806 !0)661885

19)593810 !0)016996 0)006848
29)379217 0)000482 0)001168

Section 3.2 0)332196 0)000094 0)000083 0)99999 53)9
9)796870 0)604806 !0)661889

19)593802 !0)016993 0)006854
29)393740 !0)000444 0)001277

Section 3.3 0)091571s 0)002675s !0)002678s 0)99999 55)7
9)796876 0)605007 !0)661712

19)593848 !0)017013 0)006810
29)402133 !0)000895 0)000942

DFT 9)8125 0)805861 0)036122
19)625 !0)003412 0)010855
29)375 0)001227 !0)000963

sDenotes hyperbolic term.

TABLE 4

Numerical example2mean parameter estimates and standard deviation n"1

Method i
1

(¸~1) a
1

(¸) b
1

(¸) c2 (dB) (S/N)

Actual 0)3 0)6 !0)4 0)999991 50)5
Section 3.1 0)2957(0)0134) 0)5965(0)0107) !0)3923(0)0233) 0)999882 39)3
Section 3.2 0)2971(0)0132) 0)5962(0)0106) !0)3946(0)0230) 0)999889 39)6
Section 3.3 0)2993(0)0133) 0)5994(0)0106) !0)3984(0)0228) 0)999893 39)7

Note: Parenthesis denotes the standard deviation of the preceeding parameter estimate.
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With the obvious assumption that m"2, we conduct 25 trials of the CHD and obtain the
mean parameter estimate and standard deviations in Table 4. The deterministic part of the
signal is the same for all trials, whereas a di!erent set of random numbers is utilized each
time to simulate Gaussian white noise.

The performance of the implementations described in sections 3.1.}3.3 demonstrates
a similar performance. In this example, the implementation described in section 3.3 provides
marginally better results than the implementations described in sections 3.1 and 3.2.
A typical example of the results for the implementation described in section 3.3. are
graphically documented in Figures 5(a) and 5(b), representing one trial. The signal-to-noise
ratio (S/N) and the correlation c2 were calculated on a power averaged basis among all of
the trials. The implementations of the procedures in sections 3.1}3.3 were able to describe
the "rst 39 dB of the signal. CHD describes the signal well and provides exceptional values
for the correlation c2 between the measured values and the various estimates.



Figure 5. Numerical example of signal y(tl) and error e(tl). (a) Signal:*, actual; - - -, model. (b) Error, section
3.3., with n"1.

CIRCULAR-HYPERBOLIC DECOMPOSITION 101
5. CONCLUSIONS

In this article, we establish constraints on the complex exponential algorithm to limit the
estimation procedure to the special case of circular-hyperbolic functions. In sum, the
algorithm and constraints are called the circular-hyperbolic decomposition (CHD). Three
implementation procedures for this new algorithm are developed. The "rst is closely related
to the least-squares approach of the complex exponential algorithm. The second and third
utilize an eigenvalue approach and a covariance approach to avoid zero-lag components,
respectively. Experimental and numerical examples of these implementation are provided.
They demonstrate that the CHD is able to closely match data that can be represented as
a linear combination of sines, cosines, hyperbolic sines, hyperbolic cosines, and their
products. The CHD provides improved amplitude and phase estimates compared to the
discrete Fourier transform when the frequencies of the circular functions are not integer
multiples of each other in moderate noise environments. The present demonstration is
applicable to a wide class of problems involving evenly sampled signals composed of
circular and hyperbolic sine and cosine functions in the presence of Gaussian white noise.
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